Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Gynecol Obstet Hum Reprod ; 52(8): 102643, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37558050

RESUMO

OBJECTIVE: To evaluate the combination of transvaginal ultrasonography (TVS) and endometrial cytology test (ECT) as a potential diagnostic strategy for endometrial cancer and endometrial precancerous lesions in postmenopausal patients. METHODS: 570 postmenopausal patients admitted in our hospital due to abnormal bleeding or other symptoms and/or with endometrium thickness over 5 mm on ultrasound. The endometrial thickness was evaluated by TVS. Following obtainment with written consent, all patients underwent ECT, hysteroscopy and then dilatation and curettage (D&C). Cytological sampling was conducted by scratching the uterus cavity using SAP-1 and the samples were prepared as liquid-based smear using SurePath technology. The samples were stained using Papanicolaou method. The correlation between cytological diagnosis and TVS results with the D&C histological diagnosis was analyzed. The WHO classification was used for diagnosis. RESULTS: Sensitivity of ECT, TVS, ECT or TVS positive, ECT and TVS positive to diagnose atypical hyperplasia or worse were estimated at 80.7%, 86.8%, 97.4%, 70.2%, specificity at 94.7%, 20.4%, 17.5%, 88.4%, positive predictive value at 58.2%, 21.1%, 22.8%, 60.2%, negative predictive value at 94.4%, 86.1%, 96.4%, 92.2%, and accuracy at 84.6%, 33.7%, 33.5%, 84.7%, respectively. CONCLUSIONS: Transvaginal ultrasonography and Endometrial cytology test may be regarded as a effective first-line method in endometrial pathology detection in postmenopausal women.


Assuntos
Neoplasias do Endométrio , Pós-Menopausa , Humanos , Feminino , Citologia , Detecção Precoce de Câncer , Endométrio/diagnóstico por imagem , Endométrio/patologia , Neoplasias do Endométrio/patologia , Ultrassonografia
2.
Front Plant Sci ; 14: 1192371, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37496863

RESUMO

Platycladus orientalis, a common horticultural tree species, has an extremely long life span and forms a graceful canopy. Its branches, leaves, and cones have been used in traditional Chinese medicine. However, difficulty in rooting is the main limiting factor for the conservation of germplasm resources. This study shows that the rooting rates and root numbers of cuttings were significantly reduced in ancient P. orientalis donors compared to 5-year-old P. orientalis donors. The contents of differentially accumulated metabolites (DAMs) in phenylpropanoid (caffeic acid and coniferyl alcohol) and flavonoid biosynthesis (cinnamoyl-CoA and isoliquiritigenin) pathways increased significantly in cuttings propagated from ancient P. orientalis donors compared to 5-year-old P. orientalis donors during adventitious root (AR) formation. These DAMs may prevent the ancient P. orientalis cuttings from rooting, and gradual lignification of callus was one of the main reasons for the failed rooting of ancient P. orientalis cuttings. The rooting rates of ancient P. orientalis cuttings were improved by wounding the callus to identify wounding-induced rooting-promoting metabolites. After wounding, the contents of DAMs in zeatin (5'-methylthioadenosine, cis-zeatin-O-glucoside, and adenine) and aminoacyl-tRNA biosynthesis (l-glutamine, l-histidine, l-isoleucine, l-leucine, and l-arginine) pathways increased, which might promote cell division and provided energy for the rooting process. The findings of our study suggest that breaking down the lignification of callus via wounding can eventually improve the rooting rates of ancient P. orientalis cuttings, which provides a new solution for cuttings of other difficult-to-root horticultural and woody plants.

3.
Plants (Basel) ; 12(9)2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37176812

RESUMO

The effects of tree age on the growth of cutting seedlings propagated from ancient trees have been an important issue in plant breeding and cultivation. In order to understand seedling growth and stress resistance stability, phenotypic measurements, physiological assays, and high-throughput transcriptome sequencing were performed on sown seedlings propagated from 5-year-old donors and cutting seedlings propagated from 5-, 300-, and 700-year-old Platycladus orientalis donors. In this study, the growth of cutting seedlings propagated from ancient trees was significantly slower; the soluble sugar and chlorophyll contents gradually decreased with the increase in the age of donors, and the flavonoid and total phenolic contents of sown seedlings were higher than those of cutting seedlings. Enrichment analysis of differential genes showed that plant hormone signal transduction, the plant-pathogen interaction, and the flavone and flavonol biosynthesis pathways were significantly up-regulated with the increasing age of cutting seedlings propagated from 300- and 700-year-old donors. A total of 104,764 differentially expressed genes were calculated using weighted gene co-expression network analysis, and 8 gene modules were obtained. Further, 10 hub genes in the blue module were identified, which revealed that the expression levels of JAZ, FLS, RPM1/RPS3, CML, and RPS2 increased with the increase in tree age. The results demonstrated that the age of the donors seriously affected the growth of P. orientalis cutting seedlings and that cutting propagation can preserve the resistance of ancient trees. The results of this study provide important insights into the effects of age on asexually propagated seedlings, reveal potential molecular mechanisms, and contribute to an improvement in the level of breeding and conservation of ancient germplasm resources of P. orientalis trees.

4.
Plants (Basel) ; 12(4)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36840241

RESUMO

To identify genes that respond to increased nitrogen and assess the involvement of the chlorophyll metabolic pathway and associated regulatory mechanisms in these responses, Nitraria tangutorum seedlings were subjected to four nitrogen concentrations (N0, N6, N36, and N60: 0, 6, 36, and 60 mmol·L-1 nitrogen, respectively). The N. tangutorum seedling leaf transcriptome was analyzed by high-throughput sequencing (Illumina HiSeq 4000), and 332,420 transcripts and 276,423 unigenes were identified. The numbers of differentially expressed genes (DEGs) were 4052 in N0 vs. N6, 6181 in N0 vs. N36, and 3937 in N0 vs. N60. Comparing N0 and N6, N0 and N36, and N0 and N60, we found 1101, 2222, and 1234 annotated DEGs in 113, 121, and 114 metabolic pathways, respectively, classified in the Kyoto Encyclopedia of Genes and Genomes database. Metabolic pathways with considerable accumulation were involved mainly in anthocyanin biosynthesis, carotenoid biosynthesis, porphyrin and chlorophyll metabolism, flavonoid biosynthesis, and amino acid metabolism. N36 increased δ-amino levulinic acid synthesis and upregulated expression of the magnesium chelatase H subunit, which promoted chlorophyll a synthesis. Hence, N36 stimulated chlorophyll synthesis rather than heme synthesis. These findings enrich our understanding of the N. tangutorum transcriptome and help us to research desert xerophytes' responses to increased nitrogen in the future.

5.
Environ Monit Assess ; 194(5): 344, 2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35389092

RESUMO

Tree tissues can accumulate heavy metals from the environment. We therefore aimed to evaluate the presence of the metals Pb, Cr, Mn, Cu, and Zn in four street tree species, namely Ailanthus altissima, Broussonetia papyrifera, Pinus tabuliformis, and Rhus typhina, along the highway side of Beijing, China. Sampling from the leaves, trunk bark, and branch annual segment bark of trees was conducted in the summer of 2021, and the concentration of heavy metals was determined. The results revealed the highest average concentration of total heavy metals in the R. typhina leaves (23.724 mg/kg) and barks (14.454 mg/kg). The maximum bio-concentration factor was noted for Zn in the B. papyrifera leaves (0.36) and P. tabuliformis barks (0.21). The maximum comprehensive bio-concentration index was observed for the B. papyrifera leaves (0.225) and P. tabuliformis bark (0.108). The maximum metal accumulation index was measured in the R. typhina leaves (29.682) and bark (12.407). Based on the air-originated metals, P. tabuliformis showed the highest dust collection capacity. In general, B. papyrifera and P. tabuliformis exhibited the highest absorption rate from the soil relative to the other studied species. R. typhina demonstrated the strongest phytoremediation ability for heavy metal pollution in air. In addition, our results proved that the branch annual segment bark of P. tabuliformis is an excellent record carrier that can be used to monitor heavy metal pollution in a specific time duration in an urban area.


Assuntos
Metais Pesados , Poluentes do Solo , Biodegradação Ambiental , Monitoramento Biológico , China , Cidades , Monitoramento Ambiental/métodos , Metais Pesados/análise , Casca de Planta/química , Folhas de Planta/química , Poluentes do Solo/análise , Árvores
6.
Ecotoxicol Environ Saf ; 193: 110322, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32109582

RESUMO

The γ-aminobutyric acid (GABA) shunt is closely associated with plant tolerance; however, little is known about its mechanism. This study aimed to decipher the responses of the GABA shunt and related carbon-nitrogen metabolism in poplar seedlings (Populus alba × Populus glandulosa) treated with different NaCl and CdCl2 concentrations for 30 h. The results showed that the activities of glutamate decarboxylase (GAD) and GABA-transaminase (GABA-T) were activated, as well as α-ketoglutarate dehydrogenase (α-KGDH) and succinate dehydrogenase (SDH) activities were enhanced by NaCl and CdCl2 stresses, except for SDH under CdCl2 stress. Meanwhile, the expression levels of GADs, GABA-Ts SDHs, succinyl-CoA ligases (SCSs), and succinic acid aldehyde dehydrogenases (SSADHs) were also increased. Notably, significant increases in the key components of GABA shunt, Glu and GABA, were observed under both stresses. Soluble sugars and free amino acids were enhanced, whereas citrate, malate and succinate were almost inhibited by both NaCl and CdCl2 stresses except that citrate was not changed or just increased by 50-mM NaCl stress. Thus, these results suggested that the carbon-nitrogen balance could be altered by activating the GABA shunt when main TCA-cycle intermediates were inhibited under NaCl and CdCl2 stresses. This study can enhance the understanding about the functions of the GABA shunt in woody plants under abiotic stresses and may be applied to the genetic improvement of trees for phytoremediation.


Assuntos
Cloreto de Cádmio/toxicidade , Carbono/metabolismo , Nitrogênio/metabolismo , Populus/efeitos dos fármacos , Cloreto de Sódio/toxicidade , Estresse Fisiológico/efeitos dos fármacos , Ácido gama-Aminobutírico/metabolismo , Aminoácidos/metabolismo , Cloreto de Cádmio/metabolismo , Ciclo do Ácido Cítrico/efeitos dos fármacos , Glutamato Descarboxilase/metabolismo , Populus/crescimento & desenvolvimento , Populus/metabolismo , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Cloreto de Sódio/metabolismo
7.
J Agric Food Chem ; 66(11): 3019-3029, 2018 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-29490456

RESUMO

Gnetum parvifolium is a rich source of materials for traditional medicines, food, and oil, but little is known about the mechanism underlying its seed dormancy and germination. In this study, we analyzed the proteome-level changes in its seeds during germination using isobaric tags for relative and absolute quantitation. In total, 1,040 differentially expressed proteins were identified, and cluster analysis revealed the distinct time points during which signal transduction and oxidation-reduction activity changed. Gene Ontology analysis showed that "carbohydrate metabolic process" and "response to oxidative stress" were the main enriched terms. Proteins associated with starch degradation and antioxidant enzymes were important for dormancy-release, while proteins associated with energy metabolism and protein synthesis were up-regulated during germination. Moreover, protein-interaction networks were mainly associated with heat-shock proteins. Furthermore, in accord with changes in the energy metabolism- and antioxidant-related proteins, indole-3-acetic acid, Peroxidase, and soluble sugar content increased, and the starch content decreased in almost all six stages of dormancy and germination analyzed (S1-S6). The activity of superoxide dismutase, abscisic acid, and malondialdehyde content increased in the dormancy stages (S1-S3) and then decreased in the germination stages (S4-S6). Our results provide new insights into G. parvifolium seed dormancy and germination at the proteome and physiological levels, with implications for improving seed propagation.


Assuntos
Gnetum/fisiologia , Proteínas de Plantas/metabolismo , Proteoma/metabolismo , Sementes/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Germinação , Gnetum/química , Gnetum/genética , Gnetum/crescimento & desenvolvimento , Estresse Oxidativo , Dormência de Plantas , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteoma/química , Proteoma/genética , Proteômica , Sementes/química , Sementes/genética , Sementes/fisiologia , Estresse Fisiológico
8.
Oncol Lett ; 14(5): 5271-5278, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29113163

RESUMO

Osteosarcoma is the most common type of primary bone cancer in children and adolescents, but its mechanism remains unclear. Musashi RNA-binding protein 1 (MSI1) is highly expressed in certain cancer types and functions as a putative progenitor/stem cell marker. In the present study, it was demonstrated that MSI1 expression in osteosarcoma tissue was higher compared with in the paraneoplastic tissue samples. Knockdown of MSI1 using shRNA in MG-63 and HOS cells inhibited cell proliferation in vitro and tumor formation in vivo, suggesting that MSI1 serves an essential role in osteosarcomagenesis. Further investigations demonstrated that the knockdown of MSI1 leads to the cell cycle arrest at G0/G1 phase, and the upregulation of p21 and p27 protein expression in osteosarcoma cells. Additionally, luciferase assays demonstrated that MSI1 can bind to the 3' untranslated regions of p21 and p27 mRNA. In conclusion, the results of the present study suggest that the knockdown of MSI11 can suppress cell proliferation of osteosarcoma by targeting p21 and p27 and subsequently inhibiting cell cycle progression.

9.
Electron. j. biotechnol ; 29: 68-77, sept. 2017. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1017370

RESUMO

Background: Platycladus orientalis has an extremely long life span of several thousands of years, attracting great interests in the mechanisms involved in such successful senescence regulation and resistance at physiological and molecular levels. Results: The levels of reactive oxygen species (ROS) were higher in 3,000-year-old than in 20-year-old P. orientalis, and the activities of GR and GSH demonstrated the same trend. We produced and analyzed massive sequence information from pooled samples of P. orientalis through transcriptome sequencing, which generated 51,664 unigenes with an average length of 475 bp. We then used RNA-seq analysis to obtain a high-resolution age­course profile of gene expression in 20- and 3,000-year-old P. orientalis individuals. Totally, 106 differentially expressed genes were obtained, of which 47 genes were downregulated and 59 upregulated in the old tree. These genes were involved in transcription factors, hormone-related responses, ROS scavengers, senescence-related responses, stress response, and defense and possibly play crucial roles in tackling various stresses in the 3,000-year-old P. orientalis during its life time. The expression patterns of genes related to ROS homeostasis further indicated that the high ability of ROS scavenging could be helpful for the 3,000-year-old P. orientalis to resist senescence. Conclusions: This study provides a foundation for the elucidation of senescence resistance through molecular studies and the discovery of useful genes in P. orientalis.


Assuntos
Envelhecimento/genética , Cupressaceae/genética , Transcriptoma , Regulação da Expressão Gênica , Sequestradores de Radicais Livres , Análise de Sequência de RNA , Espécies Reativas de Oxigênio , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homeostase
10.
Environ Sci Pollut Res Int ; 24(4): 3400-3411, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27866363

RESUMO

A pot experiment was conducted to evaluate the feasibility of using tree seedlings for the phytoremediation of lead/zinc (Pb/Zn) mine tailings. Seedlings of three Quercus spp. (Q. shumardii, Q. phellos, and Q. virginiana) and rooted cuttings of two Salix spp. (S. matsudana and S. integra) were transplanted into pots containing 50 and 100 % Pb/Zn mine tailings to evaluate their tolerance of heavy metals. The five species showed different tolerance levels to the Pb/Zn tailings treatments. Q. virginiana was highly tolerant to heavy metals and grew normally in the Pb/Zn tailings. The root systems showed marked differences between the Quercus spp. and Salix spp., indicating that different mechanisms operated to confer tolerance of heavy metals. The maximum efficiency of photosystem II photochemistry value of the five species showed no differences among the treatments, except for Q. shumardii. All species showed low metal translocation factors (TFs). However, S. integra had significantly higher TF values for Zn (1.42-2.18) and cadmium (1.03-1.45) than did the other species. In this respect, Q. virginiana showed the highest tolerance and a low TF, implying that it is a candidate for phytostabilization of mine tailings in southern China. S. integra may be useful for phytoextraction of tailings in temperate regions.


Assuntos
Chumbo/farmacologia , Quercus/metabolismo , Salix/metabolismo , Zinco/farmacologia , Chumbo/metabolismo , Mineração , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Quercus/efeitos dos fármacos , Salix/efeitos dos fármacos , Zinco/metabolismo
11.
Front Plant Sci ; 6: 678, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26442002

RESUMO

Populus tomentosa (Chinese white poplar) is well adapted to various extreme environments, and is considered an important species to study the effects of salinity stress on poplar trees. To decipher the mechanism of poplar's rapid response to short-term salinity stress, we firstly detected the changes in H2O2 and hormone, and then profiled the gene expression pattern of 10-week-old seedling roots treated with 200 mM NaCl for 0, 6, 12, and 24 h (h) by RNA-seq on the Illumina-Solexa platform. Physiological determination showed that the significant increase in H2O2 began at 6 h, while that in hormone ABA was at 24 h, under salt stress. Compared with controls (0 h), 3991, 4603, and 4903 genes were up regulated, and 1408, 2206, and 3461 genes were down regulated (adjusted P ≤ 0.05 and |log2Ratio|≥1) at 6, 12, and 24 h time points, respectively. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway annotation revealed that the differentially expressed genes (DEGs) were highly enriched in hormone- and reactive oxygen species-related biological processes, including "response to oxidative stress or abiotic stimulus," "peroxidase activity," "regulation of transcription," "hormone synthetic and metabolic process," "hormone signal transduction," "antioxidant activity," and "transcription factor activity." Moreover, K-means clustering demonstrated that DEGs (total RPKM value>12 from four time points) could be categorized into four kinds of expression trends: quick up/down over 6 or 12 h, and slow up/down over 24 h. Of these, DEGs involved in H2O2- and hormone- producing and signal-related genes were further enriched in this analysis, which indicated that the two kinds of small molecules, hormones and H2O2, play pivotal roles in the short-term salt stress response in poplar. This study provides a basis for future studies of the molecular adaptation of poplar and other tree species to salinity stress.

12.
Environ Sci Pollut Res Int ; 22(15): 11456-66, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25813633

RESUMO

Antimony (Sb) pollution has become a pressing environmental problem in recent years. Trees have been proven to have great potential for the feasible phytomanagement; however, little is known about Sb retention and tolerance in trees. The Chinese cork oak (Quercus variabilis Bl.) is known to be capable of growth in soils containing high concentrations of Sb. This study explored in detail the retention and acclimation of Q. variabilis under moderate and high external Sb levels. Results revealed that Q. variabilis could tolerate and accumulate high Sb (1623.39 mg kg(-1) DW) in roots. Dynamics of Sb retention in leaves, stems, and roots of Q. variabilis were different. Leaf Sb remained at a certain level for several weeks, while in roots and stems, Sb concentrations continued to increase. Sb damaged tree's PSII reaction cores but elicited defense mechanism at the donor side of PSII. It affected the electron transport flow after QA (-) more strongly than the oxygen-evolving complex and light-harvesting pigment-protein complex II. Sb also decreased leaf chlorophyll concentrations and therefore inhibited plant growth. During acclimation to Sb toxicity, Sb concentrations in leaves, stems, and roots decreased, with photosynthetic activity and pigments recovering to normal levels by the end of the experiment. These findings suggest that Sb tolerance in Q. variabilis is inducible. Acclimation seems to be related to homeostasis of Sb in plants. Results of this study can provide useful information for trees breeding and selection of Sb phytomanagement strategies, exploiting the established ability of Q. variabilis to transport, delocalize in the leaves, and tolerate Sb pollutions.


Assuntos
Antimônio/toxicidade , Quercus/metabolismo , Poluentes do Solo/toxicidade , Aclimatação , Clorofila/metabolismo , Fotossíntese , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo
13.
Environ Sci Pollut Res Int ; 21(7): 5076-85, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24374615

RESUMO

Fast-growing metal-accumulating woody plants are considered potential candidates for phytoextraction of metals. Shuikoushan mining, one of the biggest Pb and Zn production bases in China, presents an important source of the pollution of environment during the last 100 years. Over 150 km(2) of fertile soil have been contaminated by the dust, slag, and tailings from this mining. The goal of the present work has been to determine the content of Pb, Zn, Cd, and Cu in wild woody plants (18 species) naturally growing in this area. Two hundred five plant and soil samples from 11 contaminated sites were collected and analyzed. In addition, to assess the ability of multi-metal accumulation of these trees, we proposed a predictive comprehensive bio-concentration index (CBCI) based on fuzzy synthetic assessment. Our data suggest some adult trees could also accumulate a large amount of metals. Pb concentrations in leaves of Paulownia fortunei (Seem.) Hemsl. (1,179 mg/kg) exceeded the hyperaccumulation threshold (1,000 mg/kg). Elevated Pb concentrations (973.38 mg/kg) were also found in the leaves of Broussonetia papyrifera (L.) Vent., with a Pb bio-concentration factor of up to 0.701. Endemic species, Zenia insignis Chun exhibited huge potential for Zn and Cd phytoextraction, with the highest concentrations of Zn (1,968 mg/kg) and Cd (44.40 mg/kg), characteristic root nodules, and fast growth rates in poor soils. As for multi-metal accumulation ability, native species B. papyrifera was calculated to have the most exceptional ability to accumulate various metals simultaneously (CBCI 2.93), followed by Amorpha fruticosa L. (CBCI 2.72) and Lagerstroemia indica L. (CBCI 2.53). A trend of increasing metal from trunks to leaves (trunks < branches < leaves) and towards fine roots has been shown by metal partitioning between tissues. The proposed CBCI would allow for the selection of suitable trees for phytoremediation in the future.


Assuntos
Metais Pesados/análise , Poluentes do Solo/análise , Árvores/química , Biodegradação Ambiental , China , Monitoramento Ambiental , Poluição Ambiental/estatística & dados numéricos , Metais Pesados/metabolismo , Mineração , Folhas de Planta/química , Raízes de Plantas/química , Solo/química , Poluentes do Solo/metabolismo , Árvores/crescimento & desenvolvimento , Madeira/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...